
// Replace with your network credentials

const char* ssid = "FABLAB 2.4";

const char* password = "MonPetitPonant";

const int nuageux =13;

const int pluie=12;

const int soleilNuage =14;

const int soleilPluie =27;

const int soleil =26;

const int Orageux =25;

const int neigeux =33;

const int brouillard = 32;

#include <WiFi.h>

#include <HTTPClient.h>

#include <ArduinoJson.h>

#include <FastLED.h>

#define DATA_PIN 5

#define WIDTH 8

#define HEIGHT 8

#define NUM_LEDS (WIDTH * HEIGHT)

#define BRIGHTNESS 80

CRGB leds[NUM_LEDS];

// ---------- Mapping serpentin ----------

int XY(int x, int y) {

 x = (WIDTH - 1) - x; // <-- miroir horizontal corrigé

 if (y % 2 == 0) return y * WIDTH + x;

 return y * WIDTH + (WIDTH - 1 - x);

}

void drawPixel(int x, int y, CRGB color) {

 if (x < 0 || x >= WIDTH || y < 0 || y >= HEIGHT) return;

 leds[XY(x, y)] = color;

}

//---------chiffre 3*5--------

// Police 3x5 : chaque chiffre fait 3 pixels de large sur 5 de haut

const uint16_t digits3x5[10] = {

 0b111101101101111, // 0

 0b010110010010111, // 1

 0b111001111100111, // 2

 0b111001111001111, // 3

 0b101101111001001, // 4

 0b111100111001111, // 5

 0b111100111101111, // 6

 0b111001010010010, // 7

 0b111101111101111, // 8

 0b111101111001111 // 9

};

// Fonction pour dessiner un chiffre 3x5

void drawDigit3x5(int digit, int offsetX, int offsetY, CRGB color) {

 if (digit < 0 || digit > 9) return;

 for (int y = 0; y < 5; y++) {

 for (int x = 0; x < 3; x++) {

 // On lit le bit correspondant (14 - position)

 int bitPos = 14 - (y * 3 + x);

 if (digits3x5[digit] & (1 << bitPos)) {

 drawPixel(x + offsetX, y + offsetY, color);

 }

 }

 }

}

void drawNumber2Digits(int value, CRGB color) {

 value = constrain(value, 0, 99);

 int dizaine = value / 10;

 int unite = value % 10;

 // Si le chiffre est < 10, on peut soit ne rien afficher à gauche,

soit un 0

 if (value >= 10) {

 drawDigit3x5(dizaine, 0, 1, color); // Positionné à x=0, y=1 pour

centrer verticalement

 }

 drawDigit3x5(unite, 4, 1, color); // Positionné à x=4, y=1

}

// ---------- Affichage température ----------

void drawTemperature(int temp) {

 FastLED.clear();

 CRGB couleurTemp = CRGB::White;

 if (temp > 25) couleurTemp = CRGB::Red;

 else if (temp < 10) couleurTemp = CRGB::Blue;

 else couleurTemp = CRGB::Orange;

 drawNumber2Digits(temp,couleurTemp);

 FastLED.show();

}

// Replace with the latitude and longitude to where you want to get the

weather

String latitude = "48.390394";

String longitude = "-4.486076";

// Enter your location

String location = "Brest";

// Type the timezone you want to get the time for

String timezone = "Europe/Lisbon";

// Store date and time

String current_date;

String last_weather_update;

String temperature;

String humidity;

int is_day;

int weather_code = 0;

String weather_description;

// SET VARIABLE TO 0 FOR TEMPERATURE IN FAHRENHEIT DEGREES

#define TEMP_CELSIUS 1

#if TEMP_CELSIUS

 String temperature_unit = "";

 const char degree_symbol[] = "\u00B0C";

#else

 String temperature_unit = "&temperature_unit=fahrenheit";

 const char degree_symbol[] = "\u00B0F";

#endif

void allume_nuageux(){

 digitalWrite(nuageux,HIGH);

 digitalWrite(pluie,LOW);

 digitalWrite(soleilNuage,LOW);

 digitalWrite(soleilPluie,LOW);

 digitalWrite(soleil,LOW);

 digitalWrite(Orageux,LOW);

 digitalWrite(neigeux,LOW);

 digitalWrite(brouillard,LOW);

}

void allume_pluie(){

 digitalWrite(nuageux,LOW);

 digitalWrite(pluie,HIGH);

 digitalWrite(soleilNuage,LOW);

 digitalWrite(soleilPluie,LOW);

 digitalWrite(soleil,LOW);

 digitalWrite(Orageux,LOW);

 digitalWrite(neigeux,LOW);

 digitalWrite(brouillard,LOW);

}

void allume_soleilNuage(){

 digitalWrite(nuageux,LOW);

 digitalWrite(pluie,LOW);

 digitalWrite(soleilNuage,HIGH);

 digitalWrite(soleilPluie,LOW);

 digitalWrite(soleil,LOW);

 digitalWrite(Orageux,LOW);

 digitalWrite(neigeux,LOW);

 digitalWrite(brouillard,LOW);

}

void allume_soleilPluie(){

 digitalWrite(nuageux,LOW);

 digitalWrite(pluie,LOW);

 digitalWrite(soleilNuage,LOW);

 digitalWrite(soleilPluie,HIGH);

 digitalWrite(soleil,LOW);

 digitalWrite(Orageux,LOW);

 digitalWrite(neigeux,LOW);

 digitalWrite(brouillard,LOW);

}

void allume_soleil(){

 digitalWrite(nuageux,LOW);

 digitalWrite(pluie,LOW);

 digitalWrite(soleilNuage,LOW);

 digitalWrite(soleilPluie,LOW);

 digitalWrite(soleil,HIGH);

 digitalWrite(Orageux,LOW);

 digitalWrite(neigeux,LOW);

 digitalWrite(brouillard,LOW);

}

void allume_neigeux(){

 digitalWrite(nuageux,LOW);

 digitalWrite(pluie,LOW);

 digitalWrite(soleilNuage,LOW);

 digitalWrite(soleilPluie,LOW);

 digitalWrite(soleil,LOW);

 digitalWrite(Orageux,LOW);

 digitalWrite(neigeux,HIGH);

 digitalWrite(brouillard,LOW);

}

void allume_orageux(){

 digitalWrite(nuageux,LOW);

 digitalWrite(pluie,LOW);

 digitalWrite(soleilNuage,LOW);

 digitalWrite(soleilPluie,LOW);

 digitalWrite(soleil,LOW);

 digitalWrite(Orageux,HIGH);

 digitalWrite(neigeux,LOW);

 digitalWrite(brouillard,LOW);

}

void allume_brouillard(){

 digitalWrite(nuageux,LOW);

 digitalWrite(pluie,LOW);

 digitalWrite(soleilNuage,LOW);

 digitalWrite(soleilPluie,LOW);

 digitalWrite(soleil,LOW);

 digitalWrite(Orageux,LOW);

 digitalWrite(neigeux,LOW);

 digitalWrite(brouillard,HIGH);

}

/*

 WMO Weather interpretation codes (WW)- Code Description

 0 Clear sky

 1, 2, 3 Mainly clear, partly cloudy, and overcast

 45, 48 Fog and depositing rime fog

 51, 53, 55 Drizzle: Light, moderate, and dense intensity

 56, 57 Freezing Drizzle: Light and dense intensity

 61, 63, 65 Rain: Slight, moderate and heavy intensity

 66, 67 Freezing Rain: Light and heavy intensity

 71, 73, 75 Snow fall: Slight, moderate, and heavy intensity

 77 Snow grains

 80, 81, 82 Rain showers: Slight, moderate, and violent

 85, 86 Snow showers slight and heavy

 95 * Thunderstorm: Slight or moderate

 96, 99 * Thunderstorm with slight and heavy hail

*/

void get_weather_description(int code) {

 switch (code) {

 case 0:

 if(is_day==1) {allume_soleil() ; }

 else { allume_soleil(); }

 weather_description = "CLEAR SKY";

 break;

 case 1:

 if(is_day==1) { allume_soleilNuage(); }

 else { allume_soleilNuage(); }

 weather_description = "MAINLY CLEAR";

 break;

 case 2:

 allume_soleilNuage();

 weather_description = "PARTLY CLOUDY";

 break;

 case 3:

 allume_nuageux();

 weather_description = "OVERCAST";

 break;

 case 45:

 allume_brouillard();

 weather_description = "FOG";

 break;

 case 48:

 allume_brouillard();

 weather_description = "DEPOSITING RIME FOG";

 break;

 case 51:

 allume_soleilPluie();

 weather_description = "DRIZZLE LIGHT INTENSITY";

 break;

 case 53:

 allume_soleilPluie();

 weather_description = "DRIZZLE MODERATE INTENSITY";

 break;

 case 55:

 allume_soleilPluie();

 weather_description = "DRIZZLE DENSE INTENSITY";

 break;

 case 56:

 allume_soleilPluie();

 weather_description = "FREEZING DRIZZLE LIGHT";

 break;

 case 57:

 allume_soleilPluie();

 weather_description = "FREEZING DRIZZLE DENSE";

 break;

 case 61:

 allume_pluie();

 weather_description = "RAIN SLIGHT INTENSITY";

 break;

 case 63:

 allume_pluie();

 weather_description = "RAIN MODERATE INTENSITY";

 break;

 case 65:

 allume_pluie();

 weather_description = "RAIN HEAVY INTENSITY";

 break;

 case 66:

 allume_pluie();

 weather_description = "FREEZING RAIN LIGHT INTENSITY";

 break;

 case 67:

 allume_pluie();

 weather_description = "FREEZING RAIN HEAVY INTENSITY";

 break;

 case 71:

 allume_pluie();

 weather_description = "SNOW FALL SLIGHT INTENSITY";

 break;

 case 73:

 allume_neigeux();

 weather_description = "SNOW FALL MODERATE INTENSITY";

 break;

 case 75:

 allume_neigeux();

 weather_description = "SNOW FALL HEAVY INTENSITY";

 break;

 case 77:

 allume_neigeux();

 weather_description = "SNOW GRAINS";

 break;

 case 80:

 allume_orageux();

 weather_description = "RAIN SHOWERS SLIGHT";

 break;

 case 81:

 allume_orageux();

 weather_description = "RAIN SHOWERS MODERATE";

 break;

 case 82:

 allume_orageux();

 weather_description = "RAIN SHOWERS VIOLENT";

 break;

 case 85:

 allume_pluie();

 weather_description = "SNOW SHOWERS SLIGHT";

 break;

 case 86:

 allume_pluie();

 weather_description = "SNOW SHOWERS HEAVY";

 break;

 case 95:

 allume_orageux();

 weather_description = "THUNDERSTORM";

 break;

 case 96:

 allume_orageux();

 weather_description = "THUNDERSTORM SLIGHT HAIL";

 break;

 case 99:

 allume_orageux();

 weather_description = "THUNDERSTORM HEAVY HAIL";

 break;

 default:

 weather_description = "UNKNOWN WEATHER CODE";

 break;

 }

}

void get_weather_data() {

 if (WiFi.status() == WL_CONNECTED) {

 HTTPClient http;

 // Construct the API endpoint

 String url =

String("http://api.open-meteo.com/v1/forecast?latitude=" + latitude +

"&longitude=" + longitude +

"¤t=temperature_2m,relative_humidity_2m,is_day,precipitation,rain

,weather_code" + temperature_unit + "&timezone=" + timezone +

"&forecast_days=1");

 http.begin(url);

 int httpCode = http.GET(); // Make the GET request

 if (httpCode > 0) {

 // Check for the response

 if (httpCode == HTTP_CODE_OK) {

 String payload = http.getString();

 Serial.println("Request information:");

 Serial.println(payload);

 // Parse the JSON to extract the time

 JsonDocument doc;

 DeserializationError error = deserializeJson(doc, payload);

 if (!error) {

 const char* datetime = doc["current"]["time"];

 temperature = String(doc["current"]["temperature_2m"]);

 humidity = String(doc["current"]["relative_humidity_2m"]);

 is_day = String(doc["current"]["is_day"]).toInt();

 weather_code =

String(doc["current"]["weather_code"]).toInt();

 /*Serial.println(temperature);

 Serial.println(humidity);

 Serial.println(is_day);

 Serial.println(weather_code);

 Serial.println(String(timezone));*/

 // Split the datetime into date and time

 String datetime_str = String(datetime);

 int splitIndex = datetime_str.indexOf('T');

 current_date = datetime_str.substring(0, splitIndex);

 last_weather_update = datetime_str.substring(splitIndex + 1,

splitIndex + 9); // Extract time portion

 } else {

 Serial.print("deserializeJson() failed: ");

 Serial.println(error.c_str());

 }

 }

 } else {

 Serial.printf("GET request failed, error: %s\n",

http.errorToString(httpCode).c_str());

 }

 http.end(); // Close connection

 } else {

 Serial.println("Not connected to Wi-Fi");

 }

}

void setup() {

 Serial.begin(115200);

 // Connect to Wi-Fi

 WiFi.begin(ssid, password);

 Serial.print("Connecting");

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 FastLED.addLeds<WS2812B, DATA_PIN, GRB>(leds, NUM_LEDS);

 FastLED.setBrightness(BRIGHTNESS);

 Serial.print("\nConnected to Wi-Fi network with IP Address: ");

 Serial.println(WiFi.localIP());

 // Create a display object

}

void loop() {

 get_weather_data();

 get_weather_description(weather_code);

 int tempInt = temperature.toInt();

 Serial.print("Température reçue: ");

 Serial.println(tempInt);

 drawTemperature(tempInt);

 delay(10000);

}

