// Replace with your network credentials
const char* ssid = "FABLAB 2.4";

const char* password = "MonPetitPonant";
const int nuageux =13;

const int pluie=12;

const int soleilNuage =14;

const int soleilPluie =27;

const int soleil =26;

const int Orageux =25;

const int neigeux =33;

const int brouillard = 32;

#include <WiFi.h>

#include <HTTPClient.h>

#include <ArduinodJson.h>

#include <FastLED.h>

#define DATA PIN 5

#define WIDTH 8

#define HEIGHT 8

#define NUM LEDS (WIDTH * HEIGHT)
#define BRIGHTNESS 80

CRGB leds[NUM LEDS];

/] ———m—————— Mapping serpentin ----—------

int XY (int x, int y) {
x = (WIDTH - 1) - x; // <-- miroir horizontal corrigé
if (y % 2 == 0) return y * WIDTH + x;

return y * WIDTH + (WIDTH - 1 - x);

void drawPixel (int x, int y, CRGB color) {

if (x <0 || x > WIDTH || yv < 0 || y >= HEIGHT) return;
leds [XY (x, y)] = color;

}

/)= chiffre 3*5-——————-

// Police 3x5 : chaque chiffre fait 3 pixels de large sur 5 de haut
const uintl6 t digits3x5[10] = {

Ob1l11101101101111, //
0b010110010010111, //
Obl11001111100111, //
Obl11001111001111, //
O0bl01101111001001, //
O0bl11100111001111, //
Obl11100111101111, //
Obl11001010010010, //
Obl11101111101111, //
Obl11101111001111 //

O 0 J o U dx W DD = O

i

// Fonction pour dessiner un chiffre 3x5

void drawDigit3x5(int digit, int offsetX, int offsetY, CRGB color) {
if (digit < 0 || digit > 9) return;

for (int y = 0; y < 5; y++) |
for (int x = 0; x < 3; x++) {
// On 1lit le bit correspondant (14 - position)
int bitPos = 14 - (y * 3 + x);
if (digits3x5[digit] & (1 << bitPos)) {
drawPixel (x + offsetX, y + offsetY, color);

void drawNumber2Digits (int wvalue, CRGB color) {
value = constrain(value, 0, 99);
int dizaine = value / 10;

Q

int unite = value % 10;

// Si le chiffre est < 10, on peut soit ne rien afficher a gauche,
soit un O
if (value >= 10) {
drawDigit3x5(dizaine, 0, 1, color); // Positionné a x=0, y=1 pour
centrer verticalement
}

drawDigit3x5 (unite, 4, 1, color); // Positionné a x=4, y=1

[/ —m———————= Affichage température ----------
void drawTemperature (int temp) {
FastLED.clear () ;

CRGB couleurTemp = CRGB::White;

if (temp > 25) couleurTemp = CRGB::Red;

else if (temp < 10) couleurTemp = CRGB::Blue;
else couleurTemp = CRGB::0range;
drawNumber2Digits (temp, couleurTemp) ;

FastLED.show () ;

// Replace with the latitude and longitude to where you want to get the

weather
String latitude = "48.390394";
String longitude = "-4.486076";

// Enter your location
String location = "Brest";
// Type the timezone you want to get the time for

String timezone = "Europe/Lisbon";

// Store date and time
String current date;

String last weather update;
String temperature;

String humidity;

int is day;

int weather code = 0;

String weather description;

// SET VARIABLE TO 0 FOR TEMPERATURE IN FAHRENHEIT DEGREES
#define TEMP CELSIUS 1

#if TEMP CELSIUS

String temperature unit = "";
const char degree symbol[] = "\u00BOC";
#else
String temperature unit = "&temperature unit=fahrenheit";
const char degree symbol[] = "\uOOBOF";
#endif

void allume nuageux () {
digitalWrite (nuageux, HIGH) ;
digitalWrite (pluie, LOW) ;
digitalWrite (soleilNuage, LOW) ;

digitalWrite(soleilPluie, LOW) ;
digitalWrite(soleil, LOW) ;
digitalWrite (Orageux, LOW) ;
digitalWrite (neigeux, LOW) ;
digitalWrite (brouillard, LOW) ;

void allume pluie () {
digitalWrite (nuageux, LOW) ;
digitalWrite (pluie, HIGH) ;
digitalWrite (soleilNuage, LOW) ;
digitalWrite(soleilPluie, LOW) ;
digitalWrite(soleil, LOW) ;
digitalWrite (Orageux, LOW) ;
digitalWrite (neigeux, LOW) ;
digitalWrite (brouillard, LOW) ;

}

void allume soleilNuage () {
digitalWrite (nuageux, LOW) ;
digitalWrite (pluie, LOW) ;
digitalWrite (soleilNuage, HIGH) ;
digitalWrite(soleilPluie, LOW) ;
digitalWrite(soleil, LOW) ;
digitalWrite (Orageux, LOW) ;
digitalWrite (neigeux, LOW) ;
digitalWrite (brouillard, LOW) ;

}

void allume soleilPluie () {
digitalWrite (nuageux, LOW) ;
digitalWrite (pluie, LOW) ;
digitalWrite (soleilNuage, LOW) ;
digitalWrite(soleilPluie,HIGH) ;
digitalWrite(soleil, LOW) ;
digitalWrite (Orageux, LOW) ;
digitalWrite (neigeux, LOW) ;
digitalWrite (brouillard, LOW) ;

}

void allume soleil () {
digitalWrite (nuageux, LOW) ;
digitalWrite (pluie, LOW) ;
digitalWrite (soleilNuage, LOW) ;
digitalWrite(soleilPluie, LOW) ;
digitalWrite(soleil,HIGH) ;

digitalWrite (Orageux, LOW) ;
digitalWrite (neigeux, LOW) ;
digitalWrite (brouillard, LOW) ;

void allume neigeux () {

}

digitalWrite (nuageux, LOW) ;
digitalWrite (pluie, LOW) ;

digitalWrite (soleilNuage, LOW) ;
digitalWrite(soleilPluie, LOW) ;

digitalWrite(soleil, LOW) ;
digitalWrite (Orageux, LOW) ;
digitalWrite (neigeux, HIGH) ;
digitalWrite (brouillard, LOW) ;

void allume orageux() {

}

digitalWrite (nuageux, LOW) ;
digitalWrite (pluie, LOW) ;

digitalWrite (soleilNuage, LOW) ;
digitalWrite(soleilPluie, LOW) ;

digitalWrite(soleil, LOW) ;
digitalWrite (Orageux, HIGH) ;
digitalWrite (neigeux, LOW) ;
digitalWrite (brouillard, LOW) ;

void allume brouillard() {

digitalWrite (nuageux, LOW) ;
digitalWrite (pluie, LOW) ;
digitalWrite (soleilNuage, LOW) ;
digitalWrite(soleilPluie, LOW) ;
digitalWrite(soleil, LOW) ;
digitalWrite (Orageux, LOW) ;
digitalWrite (neigeux, LOW) ;
digitalWrite (brouillard,HIGH) ;

WMO Weather interpretation codes

0 Clear sky

(WW) - Code Description

partly cloudy, and overcast

Light, moderate, and dense intensity

Light and dense intensity

1, 2, 3 Mainly clear,

45, 48 Fog and depositing rime fog
51, 53, 55 Drizzle:

56, 57 Freezing Drizzle:

61, 63, 65 Rain: Slight,

moderate and heavy intensity

66, 67 Freezing Rain: Light and heavy intensity
71, 73, 75 Snow fall: Slight, moderate, and heavy intensity
77 Snow grains
80, 81, 82 Rain showers: Slight, moderate, and violent
85, 86 Snow showers slight and heavy
95 * Thunderstorm: Slight or moderate
96, 99 * Thunderstorm with slight and heavy hail
*/
void get weather description(int code) {

switch (code) {

case O:
if (is day==1) {allume soleil() ; }
else { allume soleil(); }
weather description = "CLEAR SKY";
break;

case 1:
if (is_day==1) { allume soleilNuage(); }
else { allume soleilNuage(); }
weather description = "MAINLY CLEAR";
break;

case 2:

allume soleilNuage();
weather description = "PARTLY CLOUDY";
break;

case 3:

allume nuageux () ;

weather description = "OVERCAST";
break;

case 45:
allume brouillard();
weather description = "FOG";
break;

case 48:
allume brouillard();
weather description = "DEPOSITING RIME FOG";
break;

case 51:

allume soleilPluie();

weather description "DRIZZLE LIGHT INTENSITY";
break;
case 53:

allume soleilPluie();

weather description "DRIZZLE MODERATE INTENSITY";

break;

case 55:
allume soleilPluie ()
weather description
break;

case 56:
allume soleilPluie ()
weather description
break;

case 57:
allume soleilPluie ()
weather description
break;

case 61:
allume pluie();
weather description
break;

case 63:
allume pluie();
weather description
break;

case 65:
allume pluie();
weather description
break;

case 66:
allume pluie();
weather description
break;

case 67:
allume pluie();
weather description
break;

case 71:
allume pluie();
weather description
break;

case 73:
allume neigeux();
weather description
break;

case 75:

allume neigeux();

4

"DRIZZLE DENSE INTENSITY";

"FREEZING DRIZZLE LIGHT";

"FREEZING DRIZZLE DENSE";

"RAIN SLIGHT INTENSITY";

"RAIN MODERATE INTENSITY";

"RAIN HEAVY INTENSITY";

"FREEZING RAIN LIGHT INTENSITY";

"FREEZING RAIN HEAVY INTENSITY";

"SNOW FALL SLIGHT INTENSITY";

"SNOW FALL MODERATE INTENSITY";

weather description
break;

case 77:
allume neigeux();
weather description
break;

case 80:
allume orageux();
weather description
break;

case 81:
allume orageux();
weather description
break;

case 82:
allume orageux();
weather description
break;

case 85:
allume pluie();
weather description
break;

case 86:
allume pluie();
weather description
break;

case 95:
allume orageux () ;
weather description
break;

case 96:
allume orageux () ;
weather description
break;

case 99:
allume orageux () ;
weather description
break;

default:
weather description

break;

"SNOW

"SNOW

"RAIN

"RAIN

"RAIN

"SNOW

"SNOW

FALL HEAVY INTENSITY";

GRAINS";

SHOWERS SLIGHT";

SHOWERS MODERATE";

SHOWERS VIOLENT";

SHOWERS SLIGHT";

SHOWERS HEAVY";

"THUNDERSTORM" ;

"THUNDERSTORM SLIGHT HAIL";

"THUNDERSTORM HEAVY HAIL";

"UNKNOWN WEATHER CODE";

void get weather data() {
if (WiFi.status() == WL CONNECTED) ({

HTTPClient http;

// Construct the API endpoint

String url =
String ("http://api.open-meteo.com/vl/forecast?latitude=" + latitude +
"&longitude=" + longitude +
"&¢current=temperature 2m,relative humidity 2m,is day,precipitation,rain
,weather code" + temperature unit + "&timezone=" + timezone +
"¢forecast days=1");

http.begin (url);

int httpCode = http.GET(); // Make the GET request

if (httpCode > 0) {

// Check for the response

if (httpCode == HTTP CODE OK) {
String payload = http.getString();
Serial.println ("Request information:");
Serial.println(payload);
// Parse the JSON to extract the time
JsonDocument doc;
DeserializationError error = deserializedson (doc, payload);
if (l!error) {

const char* datetime = doc["current"]["time"];

temperature = String(doc["current"] ["temperature 2m"]);

humidity = String(doc["current"] ["relative humidity 2m"]);

is day = String(doc["current"]["is day"]).toInt();

weather code =
String(doc["current"] ["weather code"]).toInt();

/*Serial.println (temperature) ;

Serial.println (humidity);

Serial.println(is_day) ;
Serial.println(weather code);
Serial.println (String(timezone)) ;*/

// Split the datetime into date and time

String datetime str = String(datetime);

int splitIndex = datetime str.indexOf('T'");

current date = datetime str.substring(0, splitIndex);

last weather update = datetime str.substring(splitlIndex + 1,
splitIndex + 9); // Extract time portion

} else {

Serial.print ("deserializedson () failed: ");

Serial.println(error.c str());

}
} else {
Serial.printf ("GET request failed, error: %$s\n",
http.errorToString (httpCode) .c _str());
}
http.end(); // Close connection
} else {
Serial.println ("Not connected to Wi-Fi");

void setup() {
Serial.begin(115200) ;

// Connect to Wi-Fi
WiFi.begin(ssid, password);
Serial.print ("Connecting");
while (WiFi.status() != WL CONNECTED) ({
delay (500) ;
Serial.print(".");
}
FastLED.addLeds<WS2812B, DATA PIN, GRB>(leds, NUM LEDS);
FastLED.setBrightness (BRIGHTNESS) ;
Serial.print ("\nConnected to Wi-Fi network with IP Address: ");

Serial.println(WiFi.localIP());
// Create a display object
void loop () {
get weather data();
get weather description(weather code);

int tempInt = temperature.tolnt();

Serial.print ("Température recue: ");

Serial.println(tempInt);

drawTemperature (tempInt) ;

delay (10000) ;

