// Replace with your network credentials
const char* ssid = "FABLAB 2.4";

const char* password = "MonPetitPonant";
const int nuageux =13;

const int pluie=12;

const int soleilNuage =14;

const int soleilPluie =27;

const int soleil =26;

const int Orageux =25;

const int neigeux =33;

const int brouillard = 32;

const int BP Brest = 4;

const int BP Paris = 16;

const int BP Marseille =17;

const int BP Lille =18;

bool mise veille = false;

#include <WiFi.h>

#include <HTTPClient.h>

#include <ArduinodJson.h>

#include <FastLED.h>

#define DATA PIN 5

#define WIDTH 8

#define HEIGHT 8

#define NUM LEDS (WIDTH * HEIGHT)
#define BRIGHTNESS 80

CRGB leds[NUM LEDS];
String ancien location ="";

String current date;

String last weather update;
String temperature;

String humidity;

int is day;

int timing push;

int ancien timer;

int timer = millis{();

int weather code = 0;

String weather description;

/] —==mm————- Mapping serpentin ----------
int XY (int x, int y) {

x = (WIDTH - 1)

if (y 5 2 == 0)
return y * WIDTH

void drawPixel (int
if (x <0 || x >
leds [XY(x, y)] =

// Police 3x5 : chaque chiffre fait 3 pixels de large sur 5 de haut

- X;

// <-— miroir horizontal corrigé

return y * WIDTH + x;
+ (WIDTH - 1 - x);

X, int vy,

= WIDTH ||

color;

const uintlé t digits3x5[10]

0pb111101101101111
0b010110010010111
0b111001111100111
0b111001111001111
0b101101111001001
0b111100111001111
0b111100111101111
0b111001010010010
0b111101111101111
0pb111101111001111
}i

v)/
v)/
r
r
v)/
v)/
y
y
v)/

//

0

O O J o U s w N

CRGB color) {

y < 0 || y >= HEIGHT)

= {

// Fonction pour dessiner un chiffre 3x5

void drawDigit3x5(int digit,

if (digit < 0 ||

for (int yv = 0; vy < 5;

for (int x = 0;

// On 1lit le bit correspondant (14 - position)

int bitPos =

drawPixel (x + offsetX, y + offsety,

int offsetX, int offsetY, CRGB color)

digit > 9) return;
y++) |
x < 3; x++) {

14 -

(y * 3 + x);
if (digits3x5[digit] &

(1 << bitPos))

{

color) ;

return;

{

void drawNumber2Digits (int value, CRGB color) {
value = constrain(value, 0, 99);
int dizaine = value / 10;

[o)

int unite = value % 10;

// Si le chiffre est < 10, on peut soit ne rien afficher a gauche,
soit un 0
if (value >= 10) {
drawDigit3x5(dizaine, 0, 1, color); // Positionné a x=0, y=1 pour
centrer verticalement

}

drawDigit3x5 (unite, 4, 1, color); // Positionné a x=4, y=1

/] —mmmmmm—— Affichage température ----------
void drawTemperature (int temp, String location) {
FastLED.clear () ;
CRGB couleurTemp = CRGB::White;

if (location == "Brest") couleurTemp = CRGB::Blue;
else if (location == "Paris") couleurTemp = CRGB::Green;
else 1if (location== "Lille") couleurTemp = CRGB::Red;

else couleurTemp = CRGB::0range;
drawNumber2Digits (temp, couleurTemp) ;

FastLED.show () ;

// Replace with the latitude and longitude to where you want to get the

weather
String latitude = "48.390394";
String longitude = "-4.486076";

// Enter your location
String location = "Brest";
// Type the timezone you want to get the time for

String timezone = "Europe/Lisbon";

void IRAM ATTR Paris () {

if (location == "Paris") {}
else {
latitude = "48.511197";

longitude = "2.205589";

location = "Paris";

mise veille = false;

timezone = "Europe/Lisbon";}

void IRAM ATTR Brest () {

if (location == "Brest") {}
else(

latitude = "48.390394";
longitude = "-4.486076";
location = "Brest";

timezone = "Europe/Lisbon";}
mise veille = false;

void IRAM ATTR Marseille () {

if (location == "Marseille") {}
else(

latitude = "43.174200";
longitude = "5.221920";

mise veille = false;

location = "Marseille";
timezone = "Europe/Lisbon";}

void IRAM ATTR Lille () {

if (location == "Lille") {}
else(

latitude = "50.371632";
longitude = "3.024128";

mise veille = false;
location = "Lille";

timezone = "Europe/Lisbon";}

}
// Store date and time

// SET VARIABLE TO 0 FOR TEMPERATURE IN FAHRENHEIT
#define TEMP CELSIUS 1

DEGREES

#if TEMP CELSIUS

String temperature unit = "";
const char degree symbol[] = "\uO0BOC";
#else
String temperature unit = "&temperature unit=fahrenheit";
const char degree symbol[] = "\uOOBOF";
#endif

void allume nuageux (int num) {
analogWrite (nuageux, num) ;
analogWrite (pluie,0);
analogWrite (soleilNuage, 0) ;
analogWrite (soleilPluie, 0);
analogWrite (soleil, Q) ;
analogWrite (Orageux,0);
analogWrite (neigeux,0);

analogWrite (brouillard, 0) ;

void allume pluie (int num) {
analogWrite (nuageux,0) ;
analogWrite (pluie, num) ;
analogWrite (soleilNuage, 0) ;
analogWrite (soleilPluie, 0);
analogWrite (soleil,0);
analogWrite (Orageux,0) ;
analogWrite (neigeux,0);
analogWrite (brouillard, 0) ;

}

void allume soleilNuage (int num) {
analogWrite (nuageux,0) ;
analogWrite (pluie,0);
analogWrite (soleilNuage, num) ;
analogWrite (soleilPluie, 0);
analogWrite (soleil,0);
analogWrite (Orageux,0) ;
analogWrite (neigeux,0);
analogWrite (brouillard, 0);

}

void allume soleilPluie (int num) {
analogWrite (nuageux,0) ;

analogWrite (pluie,0);

analogWrite (soleilNuage, 0) ;
analogWrite (soleilPluie, num) ;
analogWrite (soleil,0);
analogWrite (Orageux,0) ;
analogWrite (neigeux,0);
analogWrite (brouillard, 0) ;

}

void allume soleil (int num) {
analogWrite (nuageux,0) ;
analogWrite (pluie,0);
analogWrite (soleilNuage, 0) ;
analogWrite (soleilPluie, 0);
analogWrite (soleil, num) ;
analogWrite (Orageux,0) ;
analogWrite (neigeux,0);

analogWrite (brouillard, 0);

void allume neigeux (int num) {
analogWrite (nuageux,0) ;
analogWrite (pluie,0);
analogWrite (soleilNuage, 0) ;
analogWrite (soleilPluie, 0);
analogWrite (soleil,0);
analogWrite (Orageux,0);
analogWrite (neigeux, num) ;
analogWrite (brouillard,0);

}

void allume orageux (int num) {
analogWrite (nuageux,0);
analogWrite (pluie, 0);
analogWrite (soleilNuage, 0) ;
analogWrite (soleilPluie, 0);
analogWrite (soleil,0);
analogWrite (Orageux,num) ;
analogWrite (neigeux,0);
analogWrite (brouillard, 0) ;

}

void allume brouillard(int num) {
analogWrite (nuageux,0);
analogWrite (pluie,0);
analogWrite (soleilNuage, 0) ;

analogWrite (soleilPluie, 0);

analogWrite (soleil,0);
analogWrite (Orageux,0) ;
analogWrite (neigeux, 0) ;

analogWrite (brouillard, num) ;

WMO Weather interpretation codes (WW)- Code Description

0 Clear sky

1, 2, 3 Mainly clear, partly cloudy, and overcast

45, 48 Fog and depositing rime fog

51, 53, 55 Drizzle: Light, moderate, and dense intensity

56, 57 Freezing Drizzle: Light and dense intensity

61, 63, 65 Rain: Slight, moderate and heavy intensity

66, 67 Freezing Rain: Light and heavy intensity

71, 73, 75 Snow fall: Slight, moderate, and heavy intensity

77 Snow grains
80, 81, 82 Rain showers: Slight, moderate,
85, 86 Snow showers slight and heavy

95 * Thunderstorm: Slight or moderate

and violent

96, 99 * Thunderstorm with slight and heavy hail

*/

void get weather description(int code, int num)

switch (code) {
case O:
if (is_day==1) {allume soleil (num) ; }
else { allume soleil (num); }
weather description = "CLEAR SKY";
break;
case 1:

if (is_day==1) { allume soleilNuage (num) ;

else { allume soleilNuage (num); }
weather description = "MAINLY CLEAR";
break;

case 2:

allume soleilNuage (num) ;
"PARTLY CLOUDY";

weather description
break;

case 3:
allume nuageux (num) ;
weather description = "OVERCAST";
break;

case 45:

allume brouillard(num);

{

}

weather description = "FOG";
break;
case 48:
allume brouillard (num) ;
weather description = "DEPOSITING RIME FOG";
break;
case 51:
allume soleilPluie (num);
weather description = "DRIZZLE LIGHT INTENSITY";
break;
case 53:

allume pluie (num);

weather description "DRIZZLE MODERATE INTENSITY";
break;
case 55:

allume pluie (num);

weather description "DRIZZLE DENSE INTENSITY";
break;

case 56:
allume soleilPluie (num);
weather description = "FREEZING DRIZZLE LIGHT";
break;

case 57:
allume pluie (num);
weather description = "FREEZING DRIZZLE DENSE";
break;

case 61:
allume pluie (num);
weather description = "RAIN SLIGHT INTENSITY";
break;

case 63:
allume pluie (num);
weather description = "RAIN MODERATE INTENSITY";
break;

case 65:
allume pluie (num);
weather description = "RAIN HEAVY INTENSITY";
break;

case 66:
allume pluie (num);
weather description = "FREEZING RAIN LIGHT INTENSITY";
break;

case 67:

allume pluie (num);
weather description = "FREEZING RAIN HEAVY INTENSITY";
break;

case 71:

allume pluie (num);

weather description "SNOW FALL SLIGHT INTENSITY";
break;
case 73:

allume neigeux (num) ;

weather description "SNOW FALL MODERATE INTENSITY";
break;
case 75:
allume neigeux (num) ;
weather description = "SNOW FALL HEAVY INTENSITY";
break;
case 77:
allume neigeux (num) ;
weather description = "SNOW GRAINS";
break;
case 80:

allume orageux (num) ;

weather description "RAIN SHOWERS SLIGHT";
break;

case 81:
allume orageux (num) ;

weather description = "RAIN SHOWERS MODERATE";

break;
case 82:
allume orageux (num) ;
weather description = "RAIN SHOWERS VIOLENT";
break;
case 85:

allume pluie (num);

weather description "SNOW SHOWERS SLIGHT";
break;

case 86:
allume pluie (num);

weather description = "SNOW SHOWERS HEAVY";

break;
case 95:
allume orageux (num) ;
weather description = "THUNDERSTORM";

break;

case 96:

allume orageux (num) ;

weather description "THUNDERSTORM SLIGHT HAIL";
break;

case 99:
allume orageux (num) ;
weather description = "THUNDERSTORM HEAVY HAIL";
break;

default:

weather description "UNKNOWN WEATHER CODE";

break;
}
}
void get weather data() {
if (WiFi.status () == WL_CONNECTED) {

HTTPClient http;

// Construct the API endpoint

String url =
String ("http://api.open-meteo.com/vl/forecast?latitude=" + latitude +
"&longitude=" + longitude +
"¤t=temperature 2m,relative humidity 2m,is day,precipitation,rain
,weather code" + temperature unit + "&timezone=" + timezone +
"&«forecast days=1");

http.begin (url) ;

int httpCode = http.GET(); // Make the GET request

if (httpCode > 0) {
// Check for the response
if (httpCode == HTTP CODE OK) {
String payload = http.getString();
Serial.println ("Request information:");
Serial.println(payload)
// Parse the JSON to extract the time
JsonDocument doc;
DeserializationError error = deserializedson(doc, payload);
if (lerror) {
const char* datetime = doc["current"]["time"];
temperature = String(doc["current"] ["temperature 2m"]);
humidity = String(doc["current"]["relative humidity 2m"]);
is day = String(doc["current"]["is day"]).toInt();
weather code =

String (doc["current"] ["weather code"]).toInt();

/*Serial.println (temperature) ;
Serial.println (humidity);
Serial.println(is_day);

Serial.println(weather code);

Serial.println (String (timezone)) ;*/

// Split the datetime into date and time

String datetime str = String(datetime);

int splitIndex = datetime str.indexOf('T");

current date = datetime str.substring(0, splitIndex);

last weather update = datetime str.substring(splitIndex + 1,
splitIndex + 9); // Extract time portion

} else {
Serial.print ("deserializedJdson () failed: ");

Serial.println(error.c str());

}
} else {
Serial.printf ("GET request failed, error: %s\n",
http.errorToString (httpCode) .c str());
}
http.end(); // Close connection
} else {

Serial.println("Not connected to Wi-Fi");

void setup () {
Serial.begin(115200);
pinMode (nuageux, OUTPUT) ;
pinMode (pluie, OUTPUT) ;
pinMode (soleilNuage, OUTPUT) ;
pinMode (soleilPluie, OUTPUT) ;
pinMode (soleil, OUTPUT) ;
pinMode (Orageux, OUTPUT) ;
pinMode (neigeux, OUTPUT) ;
pinMode (brouillard, OUTPUT) ;
pinMode (BP_Brest, INPUT PULLUP) ;
pinMode (BP Paris, INPUT PULLUP) ;
pinMode (BP Marseille, INPUT PULLUP);
pinMode (BP_Lille, INPUT PULLUP) ;

// bouton des villes
attachInterrupt (BP Brest, Brest, CHANGE);

attachInterrupt (BP Paris, Paris, CHANGE);
attachInterrupt (BP_Marseille, Marseille, CHANGE) ;
attachInterrupt (BP_Lille, Lille, CHANGE);
// Connect to Wi-Fi
WiFi.begin(ssid, password);
Serial.print ("Connecting") ;
while (WiFi.status() != WL CONNECTED) {
delay (500);
Serial.print(".™);
}
FastLED.addLeds<WS2812B, DATA PIN, GRB>(leds, NUM LEDS);
FastLED.setBrightness (BRIGHTNESS) ;
Serial.print ("\nConnected to Wi-Fi network with IP Address:

Serial.println(WiFi.localIP());

// Create a display object

void loop () {

timer = millis();

if (ancien location != location) {
get weather data():
get weather description(weather code, 50);
int tempInt = temperature.tolnt();
Serial.print (latitude);
Serial.print (longitude) ;
Serial.print (location);
Serial.println(timezone) ;
Serial.print ("Température recue: ");

Serial.println(tempInt) ;

Serial.println(weather description);
drawTemperature (tempInt, location);
timing push = millis();
ancien location = location;
}
if (timer >= ancien timer + 6000) {
get weather data();
if (mise veille == true) {
get weather description(weather code, 0);
}else{get weather description(weather code,50);}
int tempInt = temperature.tolInt();

Serial.print (latitude);

")

Serial.print (longitude) ;
Serial.print (location);
Serial.println(timezone) ;
Serial.print ("Température recue: ");

Serial.println(tempInt);

Serial.println(weather description);
drawTemperature (tempInt, location) ;
ancien timer = millis();

}

if (timer >= timing push + 15000) {
mise veille = true;

get weather description(weather code, 0);

