#include <Adafruit_NeoPixel.h>
#tinclude <WiFi.h>

#include <HTTPClient.h>
#include <WiFiClientSecure.h>

#define broche 33

#tdefine nbpixels 78

#tdefine delai 30000

#tdefine taille buffer 16384
#define nd_arret 28

Y LED =--mmmmmmmmmmm o
Adafruit_NeoPixel pixels(nbpixels, broche, NEO_GRB + NEO_KHZ800);

[/ ==emmememeeeeeaaas WIFI ----ccccomcmcaanas
const char* ssid = "Point";
const char* password = "Point...";

struct arret {// structure arrét
const char* nom;

float lat_max;

float lat_min;

float long_max;

float long_min;

int led nb;

¥

arret Liste arret[nd_arret] = {};//liste d'arret

int tram_count;
unsigned char buffer[taille_buffer];//buffer pour stocker les données de 1'api
int buffer_length = 0;

void downloadData()//fonction pour télécharger les données

{
buffer_length = 0;

// Pas de vérification HTTPs : moins sécurisé, mais ¢a évite de charger un
certificat en mémoire

WiFiClientSecure client;

client.setInsecure();

// Connexion au serveur BIBUS
Serial.println("Connexion au serveur BIBUS...");
HTTPClient http;



if (http.begin(client, "https://proxy.transport.data.gouv.fr/resource/bibus-brest-
gtfs-rt-vehicle-position")) {
int httpCode = http.GET();

if (httpCode == HTTP_CODE_OK) {
int len = http.getSize(); // Récupére la taille du fichier GTFS-RT

if ((len > 0)&&(len < 16384)) {

WiFiClient* stream = http.getStreamPtr();
if (stream) {

// Téléchargement par blocs pour remplir le buffer
while (http.connected() && (buffer_length < len)) {
size t size = stream->available();
if (size) {
int ¢ = stream->readBytes(&buffer[buffer_length%taille_buffer], size);
buffer_length += c;

Serial.print(".");
¥
¥

Serial.println();
Serial.printf("Téléchargement terminé : %d octets\n", buffer_length);

} else {
Serial.println("Erreur pour récupérer le stream HTTPs");
}
} else {
Serial.println("Erreur : buffer trop petit !");
}
} else {

Serial.printf("Erreur HTTP : %s\n", http.errorToString(httpCode).c_str());
}

http.end(); // Fin de la connexion HTTPs

}
}

// Fonction pour convertir 4 octets (Little Endian) en float
float bytesToFloat(const uint8_ t* p) {

float f;

memcpy (&F, p, 4);

return f;

}

void analyserTrameGTFS() {//fonction pour analyser les donner télécharger
printf("--- DEBUT DE L'ANALYSE ---\n");
tram_count = 0;



//eteindre les leds

for (int k = @; k < nd_arret; k++) {

pixels.setPixelColor(Liste arret[k].led nb, pixels.Color(e, 0, 0));
pixels.show();}

// On parcourt le buffer a la recherche des entités (Tag 0x12)
for (int 1 = @; i < buffer_length; i++) {

// Detection d'une entité : Tag ox12 (Entity)
if (buffer[i] == ox12) {

int entity len = buffer[i+l];

int entity_start = i + 2;

// Recherche du Vehicle ID (Tag Ox0A dans 1l'entité)
char current_v_id[32] = "Inconnu";
for (int j = entity_start; j < entity_start + 20; j++) {
if (buffer[j] == 0x76 && buffer[j+1] == @x65) { // "ve..."
int id_len = buffer[j-1];
snprintf(current_v_id, (id_len < 31 ? id len + 1 : 31),
(char*)&buffer[j]);
break;
}
}

bool is_tram = false;
char type_vehicule[1@0] = "Bus";
for (int j = entity_start; j < entity_start + entity_len; j++) {
if (buffer[j] == ox2A) { // Tag route_id
if (buffer[j+1] == 0x01 && buffer[j+2] == 0x41) { // ox41 = 'A’
strcpy(type_vehicule, "TRAM A");
is_tram = true;
}
break;
}
}

// Extraction des coordonnées GPS
float lat = @, lon = O;
for (int j = entity start; j < entity start + entity len; j++) {
if (buffer[j] == @xeD) { // Latitude
lat = bytesToFloat(&buffer[j+1]);
}
if (buffer[j] == ox15) { // Longitude
lon = bytesToFloat(&buffer[j+1]);
}
}

// Affichage si on a trouvé des coordonnées valides
if (is_tram && lat != @) {
tram_count++;



for (int j = @; j < nd_arret; j++) {
// Vérifier si le tram est sur 1l'arrét
if ((lat < Liste_arret[j].lat_max && lat > Liste_arret[j].lat_min) &&
(lon < Liste_arret[j].long_max && lon > Liste_arret[j].long_min)) {
printf("[%s] ID: %s | arret: %s \n",
type_vehicule, current_v_id, Liste_arret[j].nom);

// Allumer la LED correspondant a l'arrét
pixels.setPixelColor(Liste_arret[j].led_nb, pixels.Color(@, 150, 0));
pixels.show();

}
}
}
i += entity_len;
}
}
printf("--- FIN DE L'ANALYSE ---\n");

}

void setup() {

Serial.begin(115200);

pixels.begin();
pixels.setBrightness(50);// initialisation des leds
pixels.clear();
pixels.show();

WiFi.begin(ssid, password);//initialisation de la connection wifi
Serial.print("Connexion au WiFi");
while (WiFi.status() != WL_CONNECTED) {

delay(500);

Serial.print(".");

}
Serial.print("\nConnected to Wi-Fi network with IP Address: ");
Serial.println(WiFi.localIP());

Liste_arret[@] = {// liste de tous les arrets du tram, ainsi que leur coordonnées
et son id de led

"porte plouzane”,

48.48375994,

48.377961,

-4.547852,



-4.554199,
0

}s

Liste_arret[1l] = {
"fort montbarey",
48.381144,
48.376875,
-4.541294,
-4.548565,

1

}s

Liste_arret[2] = {
"kéranroux",
48.384528,
48.380512,
-4.536135,
-4.532103,

2

}s

Liste arret[3] = {
"coat tan",
48.386820,
48.384133,
-4,529541,
-4.536938,

3

}s

Liste_arret[4] = {
"val hir",
48.387873,
48.386271,
-4.521774,
-4.529920,

4

}s

Liste_arret[5] = {
"polygone",
48.389576,
48.386816,
-4.513365,
-4,521971,

5

s

Liste_arret[6] = {
"dupuy de lome",



48.391591,
48.389291,
-4.506991,
-4.513809,
6

}s

Liste_arret[7] = {
"les capucins”,
48.392151,
48.389433,
-4.503496,
-4.506872,

7

}s

Liste_arret[8] = {
"saint exupéry",
48.389901,
48.386394,
-4.503791,
-4.504754,

8

s

Liste_arret[9] = {
"mac orlan",
48.386212,
48.383869,
-4.500667,
-4.504032,

9

}s

Liste_arret[10] = {
"recouvrance",
48.384992,
48.383621,
-4.495307,
-4.501744,

10

}s

Liste arret[11] = {
"chateau",
48.387521,
48.384250,
-4.489854,
-4.494623,

11

}s



Liste_arret[12] = {
"siam",
48.389871,
48.386909,
-4.487087,
-4.490748,

12

s

Liste_arret[13] = {
"liberté",
48.391644,
48.389503,
-4.483785,
-4.487211,

13

}s

Liste_arret[14] = {
"jean jaures",
48.393494,
48.391413,
-4.480993,
-4.484316,

14

}s

Liste_arret[15] = {
"saint martin",
48.395846,
48.393355,
-4.477499,
-4.481214,

15

s

Liste_arret[16] = {
"octroi”,
48.397918,
48.395494,
-4.474355,
-4.477971,

16

s

Liste arret[17] = {
"pillier rouge",
48.400799,
48.397694,
-4.469849,



-4.474585,
17

}s

Liste arret[18] = {

"place de strasbourg",
48.405118,
48.400639,
-4.467327,
-4.470112,
18

}s

Liste arret[19] = {
"menez paul",
48.410148,
48.404597,
-4.467368,
-4.468463,

19

}s

Liste _arret[20] = {
"europe",
48.413350,
48.409120,
-4.469341,
-4.4471942,

20

}s

Liste_arret[21] = {
"pontanézen”,
48.418446,
48.413871,
-4.465310,
-4.472115,

21

}s

Liste arret[22] = {
"eau blanche",
48.418402,
48.416256,
-4.455644,
-4.463926,

22

s

Liste_arret[23] = {
"kerlaurent",



48.419780,
48.417615,
-4.448016,
-4.456213,
23

}s

Liste_arret[24] = {
"porte de guipavas",
48.419887,
48.419033,

-4.443616,
-4.448905,
24

}s

Liste_arret[25] = {
"mesmerrien”,
48422180.,
48.418049,
-4.466353,
-4.468526,

25

s

Liste_arret[26] = {
"kergaradec",
48.427632,
48.422944,
-4.466457,
-4.467400,

26

}s

Liste_arret[27] = {
"porte de gouesnou",
48.431615,
48.427470,
-4.467107,
-4.468236,

27

}s

void loop() {//boucle principal

downloadData();

analyserTrameGTFS();

printf("nb de trame détecter : %u \n",tram_count);
delay(delai);

}






